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Abstract

Penalized Regression procedures have become very popular ways to estimate com-
plicated functions. The smoothing spline, for example, is the solution of a minimization
problem in a functional space. If such a minimization problem is posed on a repro-
ducing kernel Hilbert space (RKHS), the solution is guaranteed to exist, is unique and
has a very simple form. There are excellent books and articles about RKHS and their
applications in statistics, however, this existing literature is very dense. This paper
provides a friendly reference for a reader approaching this subject for the first time.
It begins with a simple problem, a system of linear equations, then gives an intuitive
motivation for reproducing kernels. Armed with the intuition gained from our first
examples, we take the reader from Vector Spaces, to Banach Spaces and to RKHS.
Finally, we present some statistical estimation problems that can be solved using the
mathematical machinery discussed. After reading this tutorial, the reader will be ready
to study more advanced texts and articles about the subject such as Wahba (1990) or
Gu (2002).

1 Introduction

Penalized regression procedures have become a very popular approach to estimating complex

functions (Wahba 1990, Eubank 1999, Hastie, Tibshirani & Friedman 2001). They are com-

monly used in areas such as functional data analysis (Ramsay & Silverman 2005), computer

model analysis (Storlie, Swiler, Helton & Sallaberry 2009), image processing (Berman 1994),

and various applications of spatial statistics (Bivand, Pebesma & Gómez-Rubio 2008), to

name a few. Penalized regression procedures use an estimator that is defined as the solution
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to a minimization problem. In any minimization problem, there are the following questions:

Does the solution exist? If yes, is the solution unique? How can we find it? If the problem is

posed in the Reproducing Kernel Hilbert Space (RKHS) framework that we discuss below,

then the solution is guaranteed to exist, it is unique, and it takes a particularly simple form.

Reproducing Kernel Hilbert Spaces and Reproducing Kernels play a central role in Pe-

nalized Regression. The purpose of this article is to provide a constructive tutorial for

statisticians interested in learning about RKHS methods in regression before studying more

advanced texts and articles about the subject such as Wahba (1990), Gu (2002), or Pearce &

Wand (2006). Pearce & Wand (2006) provide a review of the connection between penalized

splines and support vector machines (SVMs) using the RKHS framework. This paper is

intended to complement that review by providing the reader with the necessary background

about RKHSs to fully understand how RKHS results are used in penalized regression prob-

lems. Much of the associated literature begins with picking a reproducing kernel and goes

from there. Reproducing kernels may be the beginning of an application but they are the

end of a body of theory. This paper explicates that body of theory in an effort to make

its application to penalized regression (and hence SVMs) more lucid. We describe how to

construct a kernel with the properties needed for a given application and how to use the

properties of that kernel for penalized regression. We provide several examples to help mo-

tivate and solidify the concepts as well as a transparent justification for the so called “kernel

trick”.

In the first section of this tutorial we present, and solve, simple problems while gently

introducing key concepts. The remainder of the paper is organized as follows. Section 2 takes

the reader from a basic understanding of fields through Banach Spaces and Hilbert Spaces.

In Section 3, we provide elementary theory of RKHSs along with some examples. Section 4

discusses Penalized Regression with RKHSs. Two specific examples involving ridge regression

and smoothing splines are given with code written in the R language (R Development Core
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Team 2005) to solidify the concepts. Some methods for smoothing parameter selection are

briefly mentioned. Section 5 contains some closing remarks.

1.1 Why we care about Reproducing Kernel Hilbert Spaces.

Before introducing new concepts, we present some simple illustrations of the tools used to

solve problems in the RKHS framework. Consider solving the system of linear equations

x1 + x3 = 0 (1)

x2 = 1. (2)

Clearly, the real-valued solutions to this system are the vectors xt∗ = (−α, 1, α) for α ∈ <.

Suppose we want to find the “smallest” solution. Under the usual squared norm ‖x‖2 =

x21 + x22 + x23, the smallest solution is xts = (0, 1, 0).

Now consider a more general problem. For a given p× n matrix R and n× 1 matrix η,

solve

Rtx = η, (3)

where Rt is the transpose of R, x and the columns of R, say Rk, k = 1, 2, ..., n, are all in

<p, and η ∈ <n. We wish to find the solution xs that minimizes the norm ‖x‖ =
√
xtx. We

solve the problem using concepts that extend to RKHS.

A solution x∗ (not necessarily a minimum norm solution) exists whenever η ∈ C(Rt).

Here C(Rt) denotes the column space of Rt. Given one solution x∗, all solutions x must

satisfy

Rtx = Rtx∗

or

Rt(x∗ − x) = 0.

The vector x∗ can be written uniquely as x∗ = x0 + x1 with x0 ∈ C(R) and x1 ∈ C(R)⊥,

where C(R)⊥ is the orthogonal complement of C(R) (i.e., xt0x1 = 0, with orthogonality

defined more formally on page 12). Clearly, x0 is a solution because Rt(x∗−x0) = Rtx1 = 0
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In fact, x0 is both the unique solution in C(R) and the minimum norm solution. If x is

any other solution in C(R) then Rt(x − x0) = 0 so we have both (x − x0) ∈ C(R)⊥ and

(x − x0) ∈ C(R), two sets whose intersection is only the 0 vector. Thus x − x0 = 0 and

x = x0. In other words, every solution x∗ has the same x0 vector. Finally, x0 is also the

minimum norm solution because the arbitrary solution x∗ has

xt0x0 ≤ xt0x0 + xt1x1 = xt∗x∗.

We have established the existence of a unique, minimum norm solution in C(R) that can be

written as

xs ≡ x0 = Rξ =
n∑
k=1

ξkRk, (4)

for some ξk, k = 1, . . . , n. To find xs explicitly, write xs = Rξ and the defining equation (3)

becomes

RtRξ = η, (5)

which is just a system of linear equations. Even if there exist multiple solutions ξ, Rξ is

unique.

Now we use this framework to find the “smallest” solution to the system of equations (1)

and (2). In the general framework we have

xt = (x1, x2, x3),

ηt = (0, 1),

Rt
1 = (1, 0, 1),

Rt
2 = (0, 1, 0).

We know that the solution has the form (4) and we also know that we have to solve a system

of equations given by (5). In this case, the system of equations is

2ξ1 + 0ξ2 = 0,

0ξ1 + 1ξ2 = 1.
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The solution to the system is (ξ1, ξ2) = (0, 1) which implies that our solution to the original

problem is xs = 0R1 + 1R2 = (0, 1, 0)t as expected.

Virtually the same methods can be used to solve a similar problem in any inner-product

space Ω. As discussed later, an inner product 〈·, ·〉 assigns real numbers to pairs of “vectors.”

For given vectors Rk ∈ Ω and numbers ηk ∈ <, find x ∈ Ω such that

〈Rk,x〉 = ηk, k = 1, 2, ..., n (6)

for which the norm of ‖x‖ ≡
√
〈x,x〉 is minimal. The solution has the form

xs =
n∑
k=1

ξkRk, (7)

with ξk satisfying the linear equations

n∑
k=1

〈Ri,Rk〉ξi = ηi, i = 1, . . . , n.

For a formal proof see Máté (1990), pg. 70. In RKHS applications, vectors are typically

functions. We now apply this result to the interpolating spline problem.

1.2 Interpolating Splines.

Suppose we want to find a function f(t) that interpolates between the points (tk, ηk), k =

0, 1, 2, . . . , n, where η0 ≡ 0 and 0 = t0 < t1 < · · · < tn = 1. We restrict attention to

functions f ∈ F where F={f : f is absolutely continuous on [0,1], f(0) = 0,
∫ 1

0
[f ′(t)]2dt <∞

}. Throughout f (m) denotes the m-th derivative of f with f ′ ≡ f (1) and f ′′ ≡ f (2). The

restriction that η0 = f(0) = 0 is not really necessary, but simplifies the presentation.

We want to find the smoothest function f(t) that satisfies f(tk) = ηk, k = 1, . . . , n.

Defining an inner product on F by

〈f, g〉 =

∫ 1

0

f ′(x)g′(x)dx

5



implies a norm over the space F that is small for “smooth” functions. To address the inter-

polation problem, note that the functions Rk(s) ≡ min(s, tk), k = 1, 2, ..., n have Rk(0) = 0

and the property that 〈Rk, f〉 = f(tk) because

〈f,Rk〉 =

∫ 1

0

f ′(s)R′k(s)ds

=

∫ tk

0

f ′(s)1ds+

∫ 1

tk

f ′(s)0ds

=

∫ tk

0

f ′(s)ds = f(tk)− f(0) = f(tk).

Thus, an interpolator f satisfies a system of equations like (6), namely

f(tk) = 〈Rk, f〉 = ηk, k = 1, . . . , n. (8)

and by (7), the smoothest function f (minimum norm) that satisfies the requirements has

the form

f̂(t) =
n∑
k=1

ξkRk(t)

The ξj’s are the solutions to the system of real linear equations obtained by substituting f̂

into (8),
n∑
j=1

〈Rk, Rj〉ξj = ηk, k = 1, 2, . . . , n.

Note that

〈Rk, Rj〉 = Rj(tk) = Rk(tj) = min(tk, tj)

and define the function

R(s, t) = min(s, t)

which turns out to be a reproducing kernel.

Numerical example. Given points f(ti) = ηi, say, f(0) = 0, f(0.1) = 0.1, f(0.25) =

1, f(0.5) = 2, f(0.75) = 1.5, and f(1) = 1.75, we find
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arg minf∈F‖f‖2 =

∫ 1

0

f ′(x)2dx.

The system of equations is

0.1ξ1 + 0.1ξ2 + 0.1ξ3 + 0.1ξ4 + 0.1ξ5 = 0.1

0.1ξ1 + 0.25ξ2 + 0.25ξ3 + 0.25ξ4 + 0.25ξ5 = 1

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.5ξ4 + 0.5ξ5 = 2

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + 0.75ξ5 = 1.5

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + ξ5 = 1.75.

The solution is ξ = (−5, 2, 6,−3, 1)t, which implies that our function is

f̂(t) = −5R1(t) + 2R2(t) + 6R3(t)− 3R4(t) + 1R5(t) (9)

= −5R(t, t1) + 2R(t, t2) + 6R(t, t3)− 3R(t, t4) + 1R(t, t5) (10)

or, adding the slopes for t > ti and finding the intercepts,

f̂(t) =



t 0 ≤ t ≤ 0.1

6t− 0.5 0.1 ≤ t ≤ 0.25

4t 0.25 ≤ t ≤ 0.5

−2t+ 3 0.5 ≤ t ≤ 0.75

t+ 0.75 0.75 ≤ t ≤ 1

This is the linear interpolating spline as can be seen graphically in Figure 1.

For this illustration we restricted f so that f(0) = 0. This was only for convenience of

presentation. It can be shown that the form of the solution remains the same with any shift

to the function, so that in general the solution takes the form f̂(t) = ξ0+
∑n

j=1 ξjRj(t) where

ξ0 = η0.

The key points are (i) the elements Ri that allow us to express a function evaluated at

a point as an inner-product constraint, and (ii) the restriction to functions in F . F is a

very special function space, a reproducing kernel Hilbert space, and Ri is determined by a
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reproducing kernel R. Figure 1: Linear Interpolating Spline
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Linear Interpolating Spline

Ultimately, our goal is to address more com-

plicated regression problems like the

Linear Smoothing Spline Problem. Con-

sider simple regression data (xi, yi) with 0 ≤

xi ≤ 1, i = 1, . . . , n, and finding the function

that minimizes

1

n

n∑
i=1

{yi − f(xi)}2 + λ

∫ 1

0

f ′(x)2dx. (11)

If f(x) is restricted to be in some class of functions F , minimizing only the first term gives

least squares estimation within F . If F contains functions with f(xi) = yi for all i, such

functions minimize the first term but are typically very “unsmooth,” i.e., have large second

term. The second “penalty” term is minimized by having a horizontal line, but that rarely

has a small first term. As we will see in Section 4, for suitable F the minimizer takes the

form

f̂(x) = ξ0 +
n∑
i=1

ξiRi(x),

where the Ri’s are known functions and the ξi’s are coefficients found by solving a system of

linear equations. This produces a linear smoothing spline.

If our goal is only to derive the solution to the linear smoothing spline problem with one

predictor variable, RKHS theory is overkill. The value of RKHS theory lies in its generality.

The linear spline penalty can be replaced by any other penalty with an associated inner

product, and the xi’s can be vectors in <p. Using RKHS results, we can solve the general

problem of finding the minimizer of 1
n

∑n
i=1 (yi − f(xi))

2 + λJ(f) for a general functional J

that corresponds to a squared norm in a subspace. See Wahba (1990) or Gu (2002) for a full

treatment of this approach. We now present an introduction to this theory.
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2 Vector, Banach and Hilbert Spaces

This section presents background material required for the formal development of the RKHS

framework.

2.1 Vector Spaces

A vector space is a set that contains elements called “vectors” and supports two kinds of

operations: addition of vectors and multiplication by scalars. The scalars are drawn from

some field (the real numbers in the rest of this article) and the vector space is said to be

a vector space over that field. Formally, a set V is a vector space over a field F if there

exists a structure {V, F,+,×, 0v} consisting of V , F , a vector addition operation +, a scalar

multiplication ×, and an identity element 0v ∈ V . This structure must obey the following

axioms for any u,v,w ∈ V and a, b ∈ F :

• Associative Law: (u+ v) +w = u+ (v +w).

• Commutative Law: u+ v = v + u.

• Inverse Law: ∃s ∈ V s.t. u+ s = 0v. (Write −u ≡ s.)

• Identity Laws:

– 0v + u = u.

– 1× u = u.

• Distributive Laws:

– a× (b× u) = (a× b)× u.

– (a+ b)× u = a× u+ b× u.

– a× (u+ v) = a× u+ a× v.

We will write 0 for 0v ∈ V and u + (−v) as u − v. Any subset of a vector space that is

closed under vector addition and scalar multiplication is called a subspace.

9



The simplest example of a vector space is just < itself, which is a vector space over <.

Vector addition and scalar multiplication are just addition and multiplication on <. For

more on vector spaces and the other topics to follow in this section, see, for example, Naylor

& Sell (1982), Young (1988), Máté (1990) and Rustagi (1994).

2.2 Banach Spaces

A Banach space has a level of additional structure over that required to be a vector space.

It is a vector space that also has a distance measure called a “norm” and is “complete”

under that norm. Defining a Banach space sets the stage for defining a Hilbert space, which

involves an additional bit of structure (an “inner product”) beyond that required to be a

Banach space.

Definition. A norm of a vector space V , denoted by || · ||, is a nonnegative real valued

function satisfying the following properties for all u,v ∈ V and all a ∈ <,

1. Non-negative: ||u|| ≥ 0

2. Strictly positive: ||u|| = 0 implies u = 0

3. Homogeneous: ||au|| = |a| ||u||

4. Triangle inequality: ||u+ v|| ≤ ||u|| + ||v||

Definition. A vector space is called a normed vector space when a norm is defined on the

space.

Definition. A sequence {vn} in a normed vector space V is said to converge to v0 ∈ V if

lim
n→∞

||vn − v0|| = 0

Definition. A sequence {vn} ⊂ V is called a Cauchy sequence if for any given ε > 0, there

exists an integer N such that

||vm − vn|| < ε, whenever m,n ≥ N.
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Convergence of sequences in normed vector spaces follows the same general idea as sequences

of real numbers except that the distance between two elements of the space is measured by

the norm of the difference between the two elements.

Definition (Banach Space). A normed vector space V is called complete if every Cauchy

sequence in V converges to an element of V . A complete normed vector space is called a

Banach Space.

Example 2.1. < with the absolute value norm ‖x‖ ≡ |x| is a complete, normed vector

space over <, and is thus a Banach space.

Example 2.2. Let x = (x1, ..., xn)t be a point in <n. The lp norm on <n is defined by

||x||p =

[
n∑
i=1

|xi|p
]1/p

for 1 ≤ p <∞.

One can verify properties 1-4 at the beginning of this section for each p, validating that ||x||p

is a norm on <n. Under the lp norm, <n is complete and thus a Banach space.

2.3 Hilbert Spaces

A Hilbert Space is a Banach space in which the norm is defined by an inner-product (also

called dot-product) which we define below. We typically denote Hilbert spaces by H. For

elements u,v ∈ H, write the inner product of u and v either as 〈u,v〉H or, when it is clear

by context that the inner product is taking place in H, as 〈u,v〉. If H is a vector space

over F , the result of the inner product is an element in F . We have F = <, so the result

of an inner product will be a real number. The inner product operation must satisfy four

properties for all u,v,w ∈ H and all a ∈ F .

1. Associative: 〈au,v〉 = a〈u,v〉.

2. Commutative: 〈u,v〉 = 〈v,u〉.

3. Distributive: 〈u,v +w〉 = 〈u,v〉+ 〈u,w〉.
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4. Positive Definite: 〈u,u〉 ≥ 0 with equality holding only if u = 0.

Definition. A vector space with an inner product defined on it is called an inner-product

space. The norm of an element u in an inner-product space is taken as ||u|| = 〈u,u〉1/2.

Two vectors are said to be orthogonal if their inner product is 0 and two sets of vectors

are said to be orthogonal if every vector in one is orthogonal to every vector in the other.

The set of all vectors orthogonal to a subspace is called the orthogonal complement of the

subspace. A complete inner-product space is called a Hilbert space.

Example 2.3. <n with inner product defined by

〈u,v〉 ≡ utv =
n∑
i=1

uivi

is a Hilbert space. For any positive definite matrix A, 〈u,v〉 ≡ utAv also defines a valid

inner product.

Example 2.4. Let L2(a, b) be the vector space of all real valued functions defined on the

interval (a, b) that are square integrable and define the inner product

〈f, g〉 ≡
∫ b

a

f(x)g(x)dx.

The inner-product space L2(a, b) is well-known to be complete, see de Barra (1981), thus

L2(a, b) is a Hilbert space.

3 Reproducing Kernel Hilbert Spaces (RKHSs)

Hilbert spaces that display certain properties on certain linear operators are called repro-

ducing kernel Hilbert spaces.

Definition. A function T mapping a vector space X into another vector space Y is called

a linear operator if T (λ1x1 + λ2x2) = λ1T (x1) + λ2T (x2) for any x1,x2 ∈ X and any

λ1, λ2 ∈ <.
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Any m× n matrix A maps vectors in <n into vectors in <m via Ax = y and is linear.

Definition. The operator T : X → Y mapping a Banach space into a Banach space is

continuous at x0 ∈ X if and only if for every ε > 0 there exists δ = δ(ε) > 0 such that for

every x with ||x− x0|| < δ we have ||Tx− Tx0|| < ε.

Linear operators are continuous everywhere if they are continuous at 0.

Definition. A real valued function defined on a vector space is called a functional.

A 1× n matrix defines a linear functional on <n.

Example 3.1. Let S be the set of bounded real valued continuous functions {f(x)} defined

on the real line. Then S is a vector space with the usual + and × operations for functions.

Some functionals on S are φ(f) =
∫ b
a
f(x)dx and φa(f) = f ′(a) for some fixed a and b. A

functional of particular importance is the evaluation functional.

Definition. Let V be a vector space of functions defined from E into <. For any t ∈ E,

denote by et the evaluation functional at the point t, i.e., for g ∈ V , the mapping is et(g) =

g(t).

For V = <p, vectors can be viewed as functions from the set E = {1, 2, . . . , p} into <.

An evaluation functional is ei(x) = xi. Clearly, evaluation functionals are linear operators.

In a Hilbert space (or any normed vector space) of functions, the notion of pointwise

convergence is related to the continuity of the evaluation functionals. The following are

equivalent for a normed vector space H of real valued functions.

(i) The evaluation functionals are continuous for all t ∈ E.

(ii) If fn, f ∈ H and ||fn − f || → 0 then fn(t)→ f(t) for every t ∈ E.

(iii) For every t ∈ E there exists Kt > 0 such that |f(t)| ≤ Kt||f || for all f ∈ H.

Here (ii) is the definition of (i). See Máté (1990), pg. 123 for a proof of (iii).

To define a reproducing kernel, we need the famous Riesz Representation Theorem.
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Theorem. Let H be a Hilbert space and let φ be a continuous linear functional on H. Then

there is one and only one vector g ∈ H such that

φ(f) = 〈f, g〉, for all f ∈ H.

The vector g is sometimes called the representation of φ. However, φ and g are different

objects: φ is a linear functional on H and g is a vector in H. For a proof of this theorem see

Naylor & Sell (1982) or Máté (1990), pg. 84.

Recall, for H = <p, an evaluation functional is ei(x) = xi. The representation of this

linear functional is the indicator vector ei that is 0 everywhere except has a 1 in the ith

place. Then
xi = ei(x) = xtei.

In fact, the entire representation theorem is well known in <p because for φ(x) to be a linear

functional there must exist a vector φ such that

φ(x) = φtx.

An element of a set of functions, say f , is sometimes denoted f(·) to be explicit that

the elements are functions, whereas f(t) is the value of f(·) evaluated at t ∈ E. Applying

the Riesz Representation Theorem to a Hilbert space H of real valued functions in which

evaluation functionals are continuous, for every t ∈ E there is a unique symmetric function

R : E × E → < with R(·, t) ∈ H the representation of et, so that

f(t) = et(f) = 〈f(·), R(·, t)〉H , f ∈ H.

The function R is called a reproducing kernel (r.k.) and f(t) = 〈f(·), R(·, t)〉 is called the

reproducing property of R. In particular, by the reproducing property

R(s, t) = 〈R(·, t), R(·, s)〉.

In Subsection 1.2 we found the r.k. for the linear interpolating spline problem, R(s, t) =

min(s, t). For any fixed t, R(·, t) is a part of the space F defined there, since R(0, t) = 0,
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and
∫ 1

0
[∂R(s, t)/∂s]2ds <∞. Also, R has the reproducing property since

〈f,R(·, t)〉 =

∫ 1

0

[f ′(s)∂R(s, t)/∂s]ds

=

∫ t

0

f ′(s)1ds+

∫ 1

t

f ′(s)0ds

= f(t)− f(0) = f(t).

Many other, more detailed, examples involving RKHSs and their reproducing kernels follow,

but first the formal definition of an RKHS is presented below.

Definition A Hilbert space H of functions defined on E is called a reproducing kernel

Hilbert space if all evaluation functionals are continuous.

We now present several RKHS examples that we will then use to solve some familiar

penalized regression problems in Section 4.

3.1 Examples of Reproducing Kernel Hilbert Spaces

Example 3.2. Consider the space of all constant functionals over x = (x1, x2, . . . , xp)
t ∈ <p,

H = {fθ : fθ(x) = θ, θ ∈ <},

with 〈fθ, fλ〉 = θλ. (For simplicity, think of p = 1.) Since <p is a Hilbert Space, so is H.

H has continuous evaluation functionals, so it is an RKHS and has a unique reproducing

kernel. To find the r.k., observe that R(·,x) ∈ H, so it is a constant for any x. Write

R(x) ≡ R(·,x). By the representation theorem and the defined inner product

θ = fθ(x) = 〈fθ(·), R(·,x)〉 = θR(x)

for any x and θ. This implies that R(x) ≡ 1 so that R(·,x) = R(x) ≡ 1 and R(·, ·) ≡ 1.

Example 3.3. Consider all linear functionals over x ∈ <p passing through the origin

H = {fθ : fθ(x) = θtx, θ ∈ <p}.
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Define 〈fθ, fλ〉 = θtλ = θ1λ1 + θ2λ2 + . . .+ θpλp. The kernel R must satisfy

fθ(x) = 〈fθ(·), R(·,x)〉

for all θ and any x. Since R(·,x) ∈ H, R(v,x) = utv for some u that depends on x, i.e.,

R(·,x) = fu(x)(·), so R(v,x) = u(x)tv. By our definition of H we have

θtx = fθ(x) = 〈fθ(·), R(·,x)〉 = 〈fθ(·), fu(x)(·)〉 = θtu(x),

so we need u(x) such that for any θ and x we have

θtx = θtu(x).

It follows that u(x) = x. For example, taking θ to be the indicator vector ei implies that

ui(x) = xi for every i = 1, . . . , p. We now have R(·,x) = fx(·) so that

R(x̃,x) = xtx̃ = x1x̃1 + x2x̃2 + . . .+ xpx̃p.

Before moving on to the next example, we present one further concept that is useful in

RKHS approaches to regression problems.

The projection principle for a RKHS.

Consider the connection between the reproducing kernel R of the RKHS H and the repro-

ducing kernel R0 for a subspace H0 ⊂ H. Let H⊥0 be the orthogonal complement of H0.

Then any vector f ∈ H can be written uniquely as f = f0 + f1 with f0 ∈ H0 and f1 ∈ H⊥0 .

More particularly, R(·, t) = R0(·, t) + R1(·, t) with R0(·, t) ∈ H0 and R1(·, t) ∈ H⊥0 if and

only if R0 is the r.k. of H0 and R1 is the r.k. of H⊥0 . For a proof see Gu (2002).

Example 3.4. Now consider all affine (i.e., linear plus a constant) functionals in <p,

H = {fθ : fθ(x) = θ0 + θ1x1 + . . .+ θpxp, θ ∈ <p+1},

with 〈fθ, fλ〉 = θ0λ0+θ1λ1+ . . .+θpλp. The subspace H0 = {fθ ∈ H : θ0 ∈ <, 0 = θ1 = · · · =

θp} has the orthogonal complement H⊥0 = {fθ ∈ H : 0 = θ0}. For practical purposes, H0 is
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the space of constant functionals from Example 3.2 and H⊥0 is the space of linear functionals

from Example 3.3. Note that the inner product on H when applied to vectors in H0 and

H⊥0 , respectively, reduces to the inner products used in Examples 3.2 and 3.3.

Write H as H = H0 ⊕ H⊥0 where ⊕ denotes the direct sum of two vector spaces. For

two subspaces A and B contained in a vector space C, the direct sum is the space D =

{a + b : a ∈ A, b ∈ B}. Any elements d1, d2 ∈ D can be written as a1 + b1 and a2 + b2,

respectively for some a1, a2 ∈ A and b1, b2 ∈ B. When the two subspaces are orthogonal, as

in our example, those decompositions are unique and the inner product between d1 and d2

is 〈d1, d2〉 = 〈a1, a2〉 + 〈b1, b2〉. For more information about direct sum decomposition, see

Berlinet & Thomas-Agnan (2004) or Gu (2002), for example.

We have already derived the r.k.’s for H0 and H⊥0 (call them R0 and R1, respectively)

in Examples 3.2 and 3.3. Applying the projection principle, the r.k. for H is the sum of R0

and R1, i.e.,

R(x̃,x) = 1 + xtx̃.

Example 3.5. Denote by V the collection of functions f with f ′′ ∈ L2[0, 1] and consider

the subspace

W 0
2 = {f(x) ∈ V : f, f ′ absolutely continuous and f(0) = f ′(0) = 0}.

Define an inner product on W 0
2 as

〈f, g〉 =

∫ 1

0

f ′′(t)g′′(t)dt. (12)

Below we demonstrate that for f ∈ W 0
2 and any s, f(s) can be written as

f(s) =

∫ 1

0

(s− u)+f
′′(u)du , (13)

where (a)+ is a for a > 0 and 0 for a ≤ 0. Given any arbitrary and fixed s ∈ [0, 1],∫ 1

0

(s− u)+f
′′(u)du =

∫ s

0

(s− u)f ′′(u)du .
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Integrating by parts∫ s

0

(s− u)f ′′(u)du = (s− s)f ′(s)− (s− 0)f ′(0) +

∫ s

0

f ′(u)du =

∫ s

0

f ′(u)du

and applying the Fundamental Theorem of Calculus to the last term,∫ s

0

(s− u)f ′′(u)du = f(s)− f(0) = f(s) .

Since the r.k. of the space W 0
2 must satisfy f(s) = 〈f(·), R(·, s)〉 from (12) and (13) we see

that R(·, s) is a function such that

d2R(u, s)

du2
= (s− u)+.

We also know that R(·, s) ∈ W 0
2 , so using R(s, t) = 〈R(·, t), R(·, s)〉

R(s, t) =

∫ 1

0

(t− u)+(s− u)+du =
max(s, t) min2(s, t)

2
− min3(s, t)

6
.

For further examples of RKHSs with various inner products, see Berlinet & Thomas-Agnan

(2004).

4 Penalized Regression with RKHSs

As mentioned in the introduction, nonparametric regression is a powerful approach for solving

many current problems. The nonparametric regression model is given by

yi = f(xi) + εi, i = 1, 2, . . . , n,

where f is an unknown regression function and the εi are independent error terms. We

start this section with two common examples of penalized regression: ridge regression and

smoothing splines.

Ridge Regression. In the classical linear regression setting yi = xtiβ + εi the ridge

regression estimator β̂R proposed by Hoerl & Kennard (1970) minimizes
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1

n

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j (14)

where xij is the ith observation of the jth component. The resulting estimate is biased but

can reduce the variance relative to least squares estimates. The tuning parameter λ ≥ 0 is

a constant that controls the trade-off between bias and variance in β̂R, and is often selected

by some form of cross validation; see Section 4.4.

Smoothing Splines. Smoothing splines are among the most popular methods for the

estimation of f , due to their good empirical performance and sound theoretical support. It

is often assumed, without loss of generality, that the domain of f is [0, 1]. With f (m) the

m-th derivative of f , a smoothing spline estimate f̂ is the unique minimizer of

1

n

n∑
i=1

{yi − f(xi)}2 + λ

∫ [
f (m)(x)

]2
dx (15)

The minimization of (15) is implicitly over functions with square integrable m-th deriva-

tives. The first term of (15) encourages the fitted f to be close to the data, while the second

term penalizes the roughness of f . The smoothing parameter λ, usually pre-specified, con-

trols the trade-off between the two conflicting goals. The special case of m = 1 reduces to

the linear smoothing spline problem from (11). In practice it is common to choose m = 2

in which case the minimizer fλ of (15) is called a cubic smoothing spline. As λ → ∞, f̂λ

approaches the least squares simple linear regression line, while as λ→ 0, f̂λ approaches the

minimum curvature interpolant.

4.1 Solving the General Penalized Regression Problem

We now review a general framework to minimize (14), (15) and many other similar criteria,

cf. (O’Sullivan, Yandell & Raynor 1986, Lin & Zhang 2006, Storlie, Bondell, Reich & Zhang

2010, Storlie, Bondell & Reich 2010, Gu & Qiu 1993). The data model is

yi = f(xi) + εi, i = 1, 2, . . . , n, (16)
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where the εi are error terms and f ∈ V , a given vector space of functions on a set E.

An estimate of f is obtained by minimizing

1

n

n∑
i=1

{yi − f(xi)}2 + λJ(f), (17)

over f ∈ V where J is a penalty functional that must satisfy several restrictions and that

helps to define the vector space V . We require (i) that J(f) ≥ 0 for any f in some vector

space Ṽ , (ii) that the null set N = {f ∈ Ṽ : J(f) = 0} be a subspace, i.e., that it be closed

under vector addition and scalar multiplication, (iii) that for fN ∈ N and f ∈ Ṽ , we have

J(fN +f) = J(f), and (iv) that there exists an RKHS H contained in Ṽ for which the inner

product satisfies 〈f, f〉 = J(f). This condition forces the intersection of N and H to contain

only the zero vector.

Define a finite dimensional subspace of N , say N0, with a basis of known functions, say

{φ1, . . . , φM}, and M ≤ n. In applications N is often finite dimensional, and we can simply

take N0 = N . In the minimization problem, we restrict attention to f ∈ V where

V ≡ N0 ⊕H.

For Example 3.5, Ṽ consists of functions in L2[0, 1] with finite values of

J(f) ≡
∫ 1

0

[f ′′(t)]
2
dt.

J(f) satisfies our four conditions with H = W 0
2 . The linear functions f(x) = a+ bx are in N

so we can take φ1(x) ≡ 1 and φ2(x) = x. Note that equation (12) defines an inner product

on W 0
2 but does not define an inner product on all of Ṽ because nonzero functions could

have a zero inner product with themselves, hence the nontrivial nature of N .

The key result (Wahba’s Representation Theorem, also known as the “dual form” or

“kernel trick” (Pearce & Wand 2006)) is that the minimizer of (17) is a linear combination

of known functions involving the reproducing kernel on H. This fact will allow us to find the

coefficients of the linear combination by solving a quadratic minimization problem similar
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to those in standard linear models.

Representation Theorem. The minimizer f̂λ of equation (17) has the form

f̂λ(x) =
M∑
j=1

djφj(x) +
n∑
i=1

ciR(xi,x), (18)

where R(s, t) is the r.k. for H. An informal proof is given below, see Wahba (1990) or Gu

(2002) for a formal proof.

Since we are working in V , clearly, a minimizer f̂ must have f̂ = f̂0 + f̂1 with f̂0 ∈ N0

and f̂1 ∈ H. We want to show that f̂1(·) =
∑n

i=1 ciR(xi, ·). To simplify notation write

f̂R(·) ≡
n∑
i=1

ciR(xi, ·). (19)

Decompose H as H = H0 ⊕H⊥0 where H0 = span{R(xi, ·), i = 1, . . . , n} so that

f̂1(·) = f̂R(·) + η(·),

with η(·) ∈ H⊥0 . By orthogonality and the reproducing property of the r.k.,

0 = 〈R(xi, ·), η(·)〉 = η(xi).

We now establish the representation theorem. Using our assumptions about J ,

1

n

n∑
i=1

{yi − f̂(xi)}2 + λJ(f̂) =
1

n

n∑
i=1

{yi − f̂0(xi)− f̂1(xi)}2 + λJ(f̂0 + f̂1)

=
1

n

n∑
i=1

{yi − f̂0(xi)− f̂1(xi)}2 + λJ(f̂1)

=
1

n

n∑
i=1

{yi − f̂0(xi)− f̂R(xi)− η(xi)}2 + λJ(f̂R + η).

Because η(xi) = 0 and using orthogonality within H

1

n

n∑
i=1

{yi − f̂(xi)}2 + λJ(f̂) =
1

n

n∑
i=1

{yi − f̂0(xi)− f̂R(xi)}2 + λ
[
J(f̂R) + J(η)

]
≥ 1

n

n∑
i=1

{yi − f̂0(xi)− f̂R(xi)}2 + λJ(f̂R).
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Clearly, any η 6= 0 makes the inequality strict, so minimizers have η = 0, f̂ = f̂0 + f̂R, and

the last inequality an equality.

A remarkable feature of the result in (18) is that the form of the minimizer is represented

by a finite dimensional basis, regardless of the dimension of H. For example, H could be

all functions with second derivative in L2, such as in the cubic smoothing spline problem.

This H would require an infinte expansion of basis functions to represent all functions in

the space, yet the solution of the minimization can be represented by a finite basis! So

once we know that the minimizer takes the form (18), we can find the coefficients of the

linear combination by solving a quadratic minimization problem similar to those in standard

linear models. This occurs because we can write J(f̂) = J(f̂R) as a quadratic form in

c = (c1, . . . , cn)t. Define Σ as the n× n matrix where the i, j entry is Σij = R(xi,xj). The

matrix Σ is commonly referred to as the Gram matrix (Wahba 1990, Gu 2002). Now, using

the reproducing property of R, write

J(f̂R) =

〈
n∑
i=1

ciR(xi, ·),
n∑
j=1

cjR(xj, ·)

〉
=

n∑
i=1

n∑
j=1

cicjR(xi,xj) = ctΣc.

Define the observation vector y = [y1, . . . , yn]t, and let T be the n×M matrix with the ij-th

entry defined by Tij = {φj(xi)}. The minimization of (17) then takes the form

min
c,d

1

n
||y − (Td+ Σc)||2 + λctΣc. (20)

To solve (20) we define the following matrices,

Qn×(n+M) =
[

Tn×M Σn×n

]
,

γ(n+M)×1 =

[
dM×1

cn×1

]
,

and

S(n+M)×(n+M) =

[
0M×M 0M×n

0n×1 Σn×n

]
.
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Now (20) becomes

min
γ

1

n
||y −Qγ||2 + λγtSγ. (21)

The minimization in (21) is the same as a generalized ridge regression. Taking derivatives

with respect to γ we have

(QtQ + λS)γ̂ = Qty,

which requires solving a system of n + M equations to find γ̂. For analytical purposes, we

can write γ̂ as

γ̂ = (QtQ + λS)−Qty. (22)

As long as T is of full column rank, then f̂λ is unique. If the xi are not unique, then γ̂ is

not unique as defined, but f̂λ is still unique. One could simply use only the unique xi in the

definition of fR in (19) to ensure that γ̂ is unique in that case as well.

Alternatively, γ̂ can be obtained as the generalized least squares estimate from fitting

the linear model[
y

0

]
=

[
T Σ

0n×M In×n

][
d

c

]
+ e, Cov(e) ∝

[
In×n 0n×n

0n×n (1/λ)Σ−1n×n

]
.

For clarity, we have restricted our attention to minimizing (17), which incorporates

squared error loss between the observations and the unknown function evaluations. The

representation theorem holds for more general loss functions (e.g., those from logistic or

Poisson regression); see Gu (2002).

4.2 General Solution Applied to Cubic Smoothing Spline

Consider again the regression problem yi = f(xi) + εi, i = 1, 2, . . . , n where xi ∈ [0, 1] and

εi ∼ N(0, σ2). We focus on the cubic smoothing spline solution to this problem. That is, we

find a function that minimizes

n∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(x)2dx.
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As discussed in Subsection 4.1, N is the space of linear functions from Example 3.4 with

p = 1 (see also equation (24)) and a basis of φ1(x) = 1, φ2(x) = x. In this case, N happens

to be an RKHS, but in general it is not even necessary to define an inner product on N .

H = W 0
2 comes from Example 3.5. We know that the reproducing kernel for H is

R(s, t) =

∫ 1

0

(t− u)+(s− u)+du =
max(s, t) min2(s, t)

2
− min3(s, t)

6
,

so the solution has the form

f̂(x) = d̂0(1) + d̂1xi +
n∑
i=i

ĉiR(xi, x).

From (22) we have

(QtQ + λS)−1Qty =

[
d̂

ĉ

]
(23)

The Supplementary Material A.1 provides code written in the R language (R Development

Core Team 2005) and plots for fitting the cubic smoothing spline solution in (23) to some

motorcycle accident data. The demonstration also includes searching for the best value of

the tuning parameter λ which is briefly discussed in Section 4.4.

As an aside, it is well known that the basis functions R(xi, x) (that form the columns of

Q when evaluated at the data points) form a natural cubic spline with knots at the distinct

values of xi. See Wahba (1990) for a justification, which just involves some algebra. The

max(xi, x) and min(xi, x) in R(xi, x) combine in a way to produce knots at the xi, while the

degree of the polynomial spline would clearly be three, since it is the highest power present

in R(s, t). This is the reason that the minimization problem in this section has been given

the name “cubic” smoothing “spline”.

4.3 General Solution Applied to Ridge Regression

We now solve the linear ridge regression problem of minimizing (14) with the RKHS approach

detailed above. Although the RKHS framework is not necessary to solve the ridge regression
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problem, it serves as a good illustration of the RKHS machinery.

To put the ridge regression problem in the framework of (17) consider

Ṽ = {f(x) = β0 +

p∑
j=1

βjxj}. (24)

with the penalty function

J(f) =

p∑
j=1

β2
j .

Notice that by letting Ṽ = V0 ⊕H where V0 is the RKHS from Example 3.2 and H is from

Example 3.3, we have J(f) = 〈f, f〉H . The dimension of V0 = N = N0 is M = 1 and

φ1(x) = 1.

From (18) the solution takes the form

f̂λ(x) = d̂1 +
n∑
i=1

ĉiR(xi,x) (25)

with

(QtQ + λS)−1Qty =

[
d̂1

ĉ

]
(26)

as given by (22). In this case, it is more familiar to write the solution in what Pearce &

Wand (2006) refer to as the “primal” form,

f̂λ(x) = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp.

This can be done by recalling from Example 3.3 that

R(xi,x) = xi1x1 + xi2x2 + . . .+ xipxp.

Substituting into (25) gives

f̂(x) = d̂1 +
n∑
i=1

ĉixi1x1 +
n∑
i=1

ĉixi2x2 + . . .+
n∑
i=1

ĉixipxp,

25



which implies that

β̂0 = d̂1 and β̂j =
n∑
i=1

ĉixij (27)

for j = 1, 2, . . . , p. In the Supplementary Material A.2, we demonstrate this solution on

Longley’s (1967) employment data using the statistical software R. The RKHS solution

applied to ridge regression is mostly for illustrative (not practical) purposes, as it requires a

(n + 1) × (n + 1) matrix solve. This is of course less efficient than the standard approach

unless p > n.

Both of the previous examples illustrate a typical case in which Ṽ is constructed as the

direct sum of a vector space V0 and a RKHS H whose intersection is the zero vector,

Ṽ = V0 ⊕H.

Because the intersection is zero, any f ∈ Ṽ can be written uniquely as f = f0 + f1 with

f0 ∈ V0 and f1 ∈ H. The importance of this is that if the penalty functional J happens to

satisfy

J(f) = 〈f1, f1〉H ,

then all of our assumptions about J hold immediately with N = V0, and the solution in (22)

can be applied.

As a further aside, when V0 is itself a RKHS, then Ṽ is an RKHS under the inner product

〈f, g〉Ṽ ≡ 〈f0, g0〉V0 + 〈f1, g1〉H ,

with reproducing kernel RṼ = RV0 + RH . Note that V0 and H are orthogonal under this

inner product. This orthogonal decomposition of Ṽ is also closely related to additive models

(Wood 2006) and more generally Smoothing Spline ANOVA models (Gu 2002), which also

include tensor product splines as a special case. Thin plate splines (Wahba 1990) also fall

nicely into the general RKHS framework.
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4.4 Choosing the Degree of Smoothness

With the penalized regression procedures described above, the choice of the smoothing pa-

rameter λ is an important issue. There are many methods available for this task; e.g., visual

inspection of the fit, m-fold cross-validation (Kohavi 1995), AIC/unbiased risk estimation,

generalized maximum likelihood (Wahba 1990), generalized cross-validation (GCV) (Craven

& Wahba 1979), etc. For those examples given in the Supplementary Material, we use the

GCV approach, which works as follows for any generalized ridge regression solution, such as

in (26). Suppose that an estimate admits the following closed-form expression:

β̂ = (QtQ + λS)−1Qty.

The GCV choice of λ for this generalized ridge estimate is the minimizer of

V (λ) =
1

n
||(I−A(λ)y||2

/[ 1

n
Trace{I−A(λ)}

]2
,

where

A(λ) = Q(QtQ + λS)−1Qt.

The goal of GCV is to find the optimal λ so that the resulting β̂ has the smallest mean

squared error. For more details about GCV and other methods of finding λ see Golub,

Heath & Wahba (1979), Allen (1974), Wecker & Ansley (1983) and Wahba (1990).

5 Concluding Remarks

We have given several examples illustrating the utility of the RKHS approach to penalized

regression problems. We reviewed the building blocks necessary to define an RKHS and

presented several key results about these spaces. Finally, we used the results to illustrate

estimation for cubic smoothing spline problems and ridge regression, providing transparent

R code to enhance understanding.

The reader is now encouraged to explore some more advanced papers and texts that they

now have the tools to access, and unlock the full potential of RKHS methods. Wahba (1990)
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and Gu (2002) discuss smoothing spline ANOVA, which is a flexible modeling framework

ranging from additive modeling on one extreme to full tensor product splines on the other. Gu

(2002) also covers generalized models in the smoothing spline ANOVA framework. Pearce

& Wand (2006) explore the intimate connection between RKHSs in penalized regression

and the much used support vector machine. Lin & Zhang (2006) and Storlie, Bondell,

Reich & Zhang (2010) use the RKHS framework to develop a smoothing spline version of

the popular LASSO (Tibshirani 1996) and adaptive LASSO (Zou 2006), respectively. The

RKHS framework can also be used to do spatially adaptive smoothing (Storlie, Bondell &

Reich 2010). The flexibility and elegance of RKHS methods are remarkable.
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A Supplementary Material: Examples using R

A.1 RKHS solution applied to Cubic Smoothing Spline

We apply the cubic smoothing spline within the RKHS framework on the benchmark motor-

cycle accident data used in Silverman (1985). These data come from a computer simulation

of motorcycle accidents. The response is a series of measurements of head acceleration over

time in a simulated motorcycle accident used to test crash helmets.

The following code imports the data, creates a function to calculate the cubic smooting

spline estimate, finds the optimal GCV λ value and corresponding cubic smoothing spline

estimator, and creates the GCV plot and fitted line plot in Figure 2.

rm(list=ls(all=TRUE))

#### Data ####

library(MASS) # Package that contains the mcycle dataset

x<-mcycle$times

x<-(x-min(x))/(max(x)-min(x)) ## need to scale predictor to [0,1]

y<-mcycle$accel

#### Reproducing Kernel for <f,g>=int_0^1 f’’(x)g’’(x)dx #####

rk.1<-function(s,t){

return( (1/2)*min(s,t)^2*max(s,t) - (1/6)*(min(s,t))^3 )

}

#### Function to obtain the Gram Matrix ####

get.gram.1<-function(X){

n<-dim(X)[1] ;

Gram<-matrix(0,n,n) #initializes Gram array ;

#i=index for rows

#j=index for columns

Gram<-as.matrix(Gram) # Gram matrix ;

for (i in 1:n){

for (j in 1:n){

Gram[i,j]<-rk.1(X[i,],X[j,])

}

}

return(Gram) }
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#### Function to find a stable gen-inverse of a symmetric nonneg def ####

#### matrix to avoid numerical problems for small lambdas ####

gen.inv<-function(X,eps=1e-12){

eig.X<-eigen(X,symmetric=T) ;

P<-eig.X[[2]] ;

lambda<-eig.X[[1]] ;

ind<-lambda>eps ;

lambda[ind]<-1/lambda[ind] ;

lambda[!ind]<-0 ;

ans<-P%*%diag(lambda,nrow=length(lambda))%*%t(P) ;

return(ans) }

#### Cubic Smoothing Spline Function ####

smoothing.spline<-function(X,y,lambda){

X<-as.matrix(X)

Gram<-get.gram.1(X) #Gram matrix (nxn) ;

n<-dim(X)[1] # n=length of y ;

J<-matrix(1,n,1) # vector of ones dim ;

T<-cbind(J,X) # matrix with a basis for the null space of the penalty ;

Q<-cbind(T,Gram) # design matrix ;

m<-dim(T)[2] # dimension of the null space of the penalty ;

S<-matrix(0,n+m,n+m) #initialize S ;

S[(m+1):(n+m),(m+1):(n+m)]<-Gram #non-zero part of S ;

M<-(t(Q)%*%Q+lambda*S) ;

M.inv<-gen.inv(M) # gen-inverse of M ;

gamma.hat<-crossprod(M.inv,crossprod(Q,y)) ;

f.hat<-Q%*%gamma.hat ;

A<-Q%*%M.inv%*%t(Q) ;

tr.A<-sum(diag(A)) #trace of hat matrix ;

rss<-t(y-f.hat)%*%(y-f.hat) #residual sum of squares ;

gcv<-n*rss/(n-tr.A)^2 #obtain GCV score ;

return(list(f.hat=f.hat,gamma.hat=gamma.hat,gcv=gcv))

}

#### Find an optimal lambda using GCV... ####

log.lambda<-seq(-6,0,by=.1) ;

V<-rep(0,length(log.lambda)) ;

for (i in 1:length(log.lambda)){

V[i]<-smoothing.spline(x,y,10^log.lambda[i])$gcv #obtain GCV score ;

}

min.ind<-order(V)[1] # extract index of min(V) ;

opt.mod.1<-smoothing.spline(x,y,10^log.lambda[min.ind]) #fit optimal model ;
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### Plot of GCV ####

plot(log.lambda,V,type="l",main="GCV score",xlab="log(lambda)",ylab="GCV") ;

#### Fitted Line Plot for Cubic Smoothing Spline ####

plot(x,y,xlab="x",ylab="response",main="Cubic Smoothing Spline") ;

lines(x,opt.mod.1$f.hat,type="l",lty=1,lwd=2,col="blue") ;

Figure 2: Cubic Smoothing Spline GCV plot (left) and optimal fitted line plot (right)
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A.2 RKHS solution applied to Ridge Regression

Here an example of ridge regression in the RKHS framework is provided using the labor

statistics data of Longley (1967) which is known for having high collinearity. We seek

to model Employment based on Prices, GNP, Unemployment, Military Size, Population

Size, and Year. The following code, imports the data, creates a function to calculate the

ridge regression estimate, finds the optimal GCV λ value and corresponding ridge regression

estimator, creates the GCV plot in Figure 3, and finally converts the RKHS estimator back

to slope coefficients as in (27) and compares to the ordinary least squares solution.
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#### Data ####

data(longley)

y <- longley[,1] ;

X <- as.matrix(longley[,2:7]) ;

for(j in 1:ncol(X)) # scale each predictor to [0,1]

X[,j]<-(X[,j]-min(X[,j]))/(max(X[,j])-min(X[,j])) ;

#### Reproducing Kernel #####

rk.2<-function(s,t){

p<-length(s) ;

rk<-0 ;

for (i in 1:p){

rk<-s[i]*t[i]+rk

}

return( (rk) )

}

#### Gram matrix #####

get.gram.2<-function(X){

n<-dim(X)[1];

Gram<-matrix(0,n,n);

#initializes Gram array;

#i=index for rows;

#j=index for columns;

for(i in 1:n){

for (j in 1:n){

Gram[i,j]<-rk.2(X[i,],X[j,])

}

}

return(Gram) }

#### Ridge Regression Function ####

ridge.regression<-function(X,y,lambda){

Gram<-get.gram.2(X) #Gram matrix (nxn) ;

n<-dim(X)[1] # n=length of y ;

J<-matrix(1,n,1) # vector of ones dim ;

Q<-cbind(J,Gram) # design matrix ;

m<-1 # dimension of the null space of the penalty ;

S<-matrix(0,n+m,n+m) #initialize S ;

S[(m+1):(n+m),(m+1):(n+m)]<-Gram #non-zero part of S ;

M<-(t(Q)%*%Q+lambda*S) ;

M.inv<-gen.inv(M) # gen-inverse of M ;
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gamma.hat<-as.numeric(crossprod(M.inv,crossprod(Q,y))) ;

f.hat<-Q%*%gamma.hat ;

A<-Q%*%M.inv%*%t(Q) ;

tr.A<-sum(diag(A)) #trace of hat matrix ;

rss<-t(y-f.hat)%*%(y-f.hat) #residual sum of squares ;

gcv<-n*rss/(n-tr.A)^2 #obtain GCV score ;

beta.hat.0<-gamma.hat[1] #intercept ;

beta.hat<-c(beta.hat.0,gamma.hat[-1]%*%X) # slopes ;

return(list(f.hat=f.hat,gamma.hat=gamma.hat,gcv=gcv,beta.hat=beta.hat))

}

#### Find an optimal lambda using GCV... ####

log.lambda<-seq(-6,0,by=.1) ;

V<-rep(0,length(log.lambda)) ;

beta.mat<-matrix(0,length(log.lambda),ncol(X)+1) ;

for (i in 1:length(log.lambda)){

ans.i<-ridge.regression(X,y,10^log.lambda[i]) ;

V[i]<-ans.i$gcv #obtain GCV score ;

beta.mat[i,]<-ans.i$beta.hat #obtain beta estimates ;

}

#### Plot of GCV scores ####

plot(log.lambda,V,type="l",main="GCV score",xlab="log(lambda)",ylab="GCV") ;

#### Plot betas across lambda ####

plot(log.lambda,beta.mat[,2],main="Betas Across Lambda",xlab="log(lambda)",

ylab="Beta",col=0, ylim=range(beta.mat[,-1])) ;

for(j in 1:ncol(X))

lines(log.lambda,beta.mat[,j+1],col=j) ;

legend(-2,80,legend=paste("Beta",1:ncol(X)),lty=rep(1,ncol(X)),col=1:ncol(X)) ;

### Fit GCV optimal ridge regression ####

min.ind<-order(V)[1] # extract index of min(V) ;

opt.mod.2<-ridge.regression(X,y,10^log.lambda[min.ind]) ;

#### Fit ordinary least squares regression (i.e., lambda=0, no penalty) ####

ols.mod.2<-ridge.regression(X,y,0) ;

#### Print Ridge Regression Estimates ####

round(opt.mod.2$beta.hat,2) ;

#### Print OLS Estimates ####

round(ols.mod.2$beta.hat,2) ;
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The last two print statments (which include the intercept β̂0) give

β̂opt = [82.78, 54.17, 5.36, 1.38, −28.79, 5.40, −0.61]′

β̂ols = [81.64, 84.49, 10.71, 2.39, −39.04, −21.28, 2.40]′

Figure 3: Ridge Regression GCV plot (left) and change in β̂j across λ (right)

−6 −5 −4 −3 −2 −1 0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

GCV score

log(lambda)

G
C

V

−6 −5 −4 −3 −2 −1 0

−
40

−
20

0
20

40
60

80

Betas Across Lambda

log(lambda)

B
et

a

Beta 1
Beta 2
Beta 3
Beta 4
Beta 5
Beta 6

36


